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A study is made of the instability of nucleation in a metastable medium and a 
model of significantly nonlinear relaxation self-oscillations which develop when 
there is an intense dependence of nucleation rate on temperature. 

When a liquid is heated rather rapidly, the main mass of vapor-phase nuclei is produced 
by the fluctuation path, and the role of prepared vapor-formation centers becomes insignifi- 
cant [i]. As a result, upon rapid and deep entry into the metastable state there is an ava- 
lanche-like development of nuclei within the volume of the heated liquid and a rapid growth 
of bubbles which absorb the superheating heat at an increasing rate. After removal of bub- 
bles from the volume considered, new nuclei appear, and the cycle is repeated. As a result, 
a unique self-oscillating regime of homogeneous nucleation is established due to competition 
between heat transfer with the external source and heat loss by growing nuclei. 

Similar, but significantly more well-known, phenomena occur in boiling on a wall, where 
the overwhelming fraction of bubbles is formed on prepared vapor-formation centers, but ac- 
tivation of the latter requires time and significant superheating. Such a situation occurs 
when the liquid easily wets the solid surface and is especially characteristic of liquid-metal 
boiling [2, 3]. Explosion-like generation of bubbles on a heating surface depleted of vapor- 
formation centers lies at the base of the so-called third boiling crisis - a transition to a 
film regime, which replaces a developed bubble regime [4]. On the whole, as a result of the 
phenomena described a self-oscillating regime of homo- or heterogeneous boiling can be estab- 
lished, known as "shock," "explosive," or "impulsive" boiling. 

An analogous self-oscillating regime is possible with formation of liquid nuclei or solid 
phase in supercooled vapor or liquid. In this case processes of homogeneous nucleation play 
a significantly greater specific role than in boiling. Just such a regime may in many cases 
be responsible for loss of stability of steady-state operating regimes and regular oscillations 
of the operating characteristics of crystallizers with continuous removal of the crystals 
formed [5]. 

Such self-oscillations must lead to periodic oscillations of heater temperatures, heat 
flux, vapor density in bubbles, concentrations of two-phase systems, etc, The presence in the 
system considered of natural oscillation frequencies makes possible various resonant phenom- 
ena and artificial parametric excitation of oscillations, opening definite possibilities for 
active interference in the processes of new phase formation in order to intensify heat trans- 
fer, increase crystal output, etc. An example of this approach was described in [6]. 

To the authors' knowledge there is no systematic theory of instability and self-oscilla- 
tion of this type. Aside from the usual difficulties related to analysis of periodic processes 
in nonlinear systems, this is apparently related to the lack of adequate physical models for 
systems with distributed parameters of the type considered, and also to the undeveloped state 
of the corresponding mathematics. Since the present study is directed toward the principles of 
the matter,we will consider only the simplest possible, spatially homogeneous model system 
associated with homogeneous boiling, with a number of simpiifying assumption~ namely: the li- 
quid's thermophysical parameters and critical nucleus radius r, will be considered constant; 
energy losses to nucleation and the relaxation of the rate of this process to its steady- 
state value corresponding to a given superheating will be neglected; and the volume concen- 
tration of bubbles will be assumed low. Moreover, we will use the simplest possible func- 
tions to describe the kinetics of heat supply from without, growth of individual bubbles, and 
their removal from the system. Generalization of this theory to more complex situations is 
mainly a matter of more complex mathematics and, as a rule, is obvious. 
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Evolution Equation, For a dynamic description of the system we will use the heat- 
balance equation and an equation for the distribution function f(t, r) of bubbles over radius, 
normalized to the numerical bubble concentration. The first of these follows from the expres- 
sion for the elementary quantity of heat obtained by the system corresponding to the first 
principle of thermodynamics: dq = cxdT + Ldx, where c x is the heat capacity of the two-phase 
system for constant mass concentration x of the elements of the new phase. At a low concen- 
tration of the new phase the heat capacity and density of the mixture coincide approximately 
with the values of c and p for the liquid. Therefore, the heat-balance equation can be written 
in the form 

dv 4 
pc drd_T_ = a ( r m - - T ) - - p u L j T t ( t ,  r) dr, o= 3 nrS" (1 )  

r .  

Here a is the effective coefficient of heat transfer with the external thermostat at tempera- 
ture T m calculated per unit volume of the mixture. The quantity T m has the sense of the maxi- 
mum temperature to which the liquid could be heated if phase transitions were absent. Thus, 
in Eq. (i) in fact we take pdq = ~(T m -- T); the assumption of temperature homogeneity in the 
two-phase mixture corresponds to a system with ideal mixing. 

We write the kinetic equation for the distribution function and boundary condition there- 
to in the form 

at +-~-r T f +v t=~  T f r - r .  = $  To " ,  (2)  

Here T is the effective mass-transfer coefficient; J is the rate of nucleation, dependent on 
the relative superheating above the boiling temperature To. In accordance with the hypothe- 
sis of ideal mixing the distribution function is also considered homogeneous within the volume 

occupied by the system, and removalof bubbles is described with the simplest possible bal- 
ance relationship, according to which the number of bubbles of a given radius leav- 
ing a unit volume of the mixture per unit time is proportional to the concentration 
of such bubbles with a constant proportionality constant y. In reality, removal 
of elements of the new phase may occur due to the action of gravity and bouyancy (which is 
especially characteristic of vapor formation) or as a result of precipitation of such ele, 
ments on the boundaries of the volume occupied by the mixture (which is characteristic of 
crystallization). The assumption that y is independent of r is a definite idealization, which 
does not change the essence of the matter, but significantly simplifies calculations. The 
assumption of system homogeneity presupposes intense mixing, which is obviously difficult to 
accomplish in boiling liquids, but is quite usual in many types of crystallizers. The bound- 
ary condition in Eq. (2) describes behavior in a system of bubbles of minimum size. 

We introduce new variables and parameters: 

T -  To Tm - -  To f 
u - - - - - - ,  urn= , ~ = - - ,  s = r  z, 

T O To r 

dr_  _ [~Tou [~ = % 

dt r pvL 

(3) 

where % is the liquid thermal conductivity. The expression used for dr/dt corresponds toa 
growth process whose rate is limited by heat supply to the bubble at small Jacobi numbers. 
This expression is valid for r >> r,; proof of its suitability is offered by the fact that 
the main contribution to the integral of Eq. (I) is produced by quite large bubbles. In prin- 
ciple this expression may be regarded as a model one, and if necessary, could be replaced 
by any other known one (as presented, for example, in [7]). 

In the variables of Eq. (3), Eqs. (I) and (2) take on the form 

T pc + 2 a  . . . .  I u = .  urn, I---- q~(t, s) V s ds, (4)  
pc pc o 

a~ J (u) 
2[~Tou ~ + = 0, I, .o a - - / -  + = ' 

, is [ jrou 

w h e r e  f o r  s i m p l i c i t y  i n  t h e  l i m i t s  we t a k e  s = 0 i n s t e a d  o f  s = r 2 , .  

(5) 
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System (4), (5) is intensely nonlinear, and our mai~ problem is obtaining a unique equa- 
tion describing the evolution of the process, i.e., eliminating one of the unknown variables. 
To do this, we take the Laplace transform of Eq. (5), replacing the variable s by p, and ob- 

tain dq~ v + (2[~Toup + y) q~p = 2J (u) 
d~ 

We will limit our study to the situation at sufficiently large t, in which cage we can, 
first, neglect the term with the arbitrary constant which appears in the standard form of the 
general solution of this equation (this implies elimination of the effect of initial condi- 
tions) and, second, replace the integral of u over dt from zero to t by uot, where Uo is the 
mean over time of u(t), which is approximately valid for yt >> i. We then have 

= 2 j" J [u (~)1 exp I - -  (2~Touop + y; (t - -  ~)1 dT. Sp 
0 

F u r t h e r ,  w i t h  t h e  a i d  o f  a new L a p l a c e  t r a n s f o r m ,  we t r a n s f o r m  f rom t h e  v a r i a b l e  t t o  pT. 

2gp, 
~pp s 

2~T~uop + p' + 7 

Taking the inverse Laplace transform of p to s, we have 

(' ) = JP_._..__2__' exp +-----Y--? s . 
~PP' fITouo 2t3Touo 

The Laplace transform of the integral l(t) from (4) has the form 

It," = ~ tpp, ] / ' ~ - d s  = (lnfSTouo)'/2 (p' + V) -3 l l Jp , ,  
0 

so that t 

I (t) = 2 (2~Touo)l/~ ~ i [u (t - -  v)l e-Vt I#-~-dx. 
0 

At yt >> i, to the accuracy of an exponentially small error the upper limit in the inte- 
gral obtained can be extended to infinity. Substituting the expression obtained for I(t) in 
Eq. (4), we obtain the following integrodifferential evolution equation for the unique vari- 

able -- the relative superheating u: 

du + 4n (2~T~u0) 1/2 k ~ u J [u (t - -  x)] e-v~ V---~- dr = (u,~ - -  u). (6)  
dt pc .~o pc 

Steady-State Regime Stability. Equation (6) can be regarded as corresponding to a non- 

linea~ system either with an infinite number of degrees of freedom or with distributed param- 
eters. It admits a steady-state solution u(t) = Us, and for determination of u s we have the 

transcendental algebraic equation (taking uo = Us) 

(~To)I/e z (2z~us)3/2 J (tQ) : Urn - -  Us- (7 )  
czy3/e 

We will now study the stability of the regime of Eq. (7) by taking u = u s + x, with 
Ix(t)[ << u s . Introducing the new dimensionless variables 

% ~ x ~ u~ ~ / '  (u~) 
= -- , T, = --, U -- g -- , 

u~ ~ us J (u~) 

we o b t a i n  f rom  Eqs .  (6)  and (7)  a l i n e a r  e q u a t i o n  f o r  t h e  p e r t u r b a t i o n  

~, ~ + u~ + g (u - i) ~ ~ ~(~--z)e-iVzdz = 0 (8) 

Taking ~ = ~oe vx, from Eq. (8) one can easily obtain an algebraic equation for the com- 
plex parameter v, which splits into two equations for the real and imaginary components of 
this parameter. After simple calculations we have 

~ , v + U +  g ( U - - 1 )  O, (9)  
(l + ~ p / 2  
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In parametric form the neutralstability curve is described by two real equations which 
follow from Eq. (9) at ~ = im, where ~ is a real quantity. Introducing the variables 

r R - -  x, 
U 

we write these equations in the form 

Ssin ..3~ ___, R(1 + tg~)a/4tgtp,  
2 

U - - 1  
, S : g - - ,  ( 1 0 )  

u 

Scos , 3~ = --(1 + tgZcp)3/4. (11) 
2 

From Eq. (ii) we have the equation tan(3~/2) = -- R tan~, which has a root ~ = 0 and a 
root ~= ~ (R), which decreases monotonically from ~/2 to 7/3 with increase in R from zero to 
infinity. The first root corresponds to the instability condition S < --i, which in expanded 

form can be written as 

u, ~ [ < U (12) 
J(u.) du .==. U - - 1  

The second root gives the instability condition 

J-(u,)U~ dJ .=.,>S*(R)=(l + tg~)3/4(--e~ ~ ) ' " (13) 

When inequality (12) is satisfied, stability is disrupted with respect to small pertur- 
bations of zero frequency, while when inequality (13) is satisfied, stability is lost with 

respect to perturbations of frequency m = tan~ (R) > /~. 

Thus, instability is possible both for increasing and decreasing dependences of nuclea- 
tion rate on relative superheating (or in the case of crystallization, on relative super- 
cooling), if the dependence is strong enough. Decreasing dependences are naturally not 
realistic for boiling,lbut are of interest in crystallization processes. In fact, for the 
latter, the Tamman effect is known -- the function J(u) has a maximum, caused by abrupt in- 
crease in the viscosity of the melt or decrease in the diffusion coefficient in the solu- 
tion with increase in supercooling. Examples of such functions for crystallization from 

melts and solutions can be found in [8]. 

The dependence of the critical value of the parameter S, and the perturbation frequency 
with respect to which stability is initially lost on the parameter R = Te/U is shown in Fig. 

i. 

As a result of steady-state regime instability both a gentle increase in self-oscilla- 
tion amplitude with increase in supercriticality and an abrupt establishment of significant- 
ly nonlinear self-oscillations directly after transition through the neutral stability curve 
are possible. Preliminary analysis indicates that the former is characteristic of increasing, 
the latter of decreasing, segments of J(u). In the first case, for sufficiently low super- 
criticality slightly nonlinear almost harmonic self-oscillations are established, which can 
be studied approximately by maintaining in the integrand of Eq. (6) terms of higher order in 
x and considering the difference between uo and Us, as a result of which in place of Eq. (8) 
we obtain some nonlinear equation. Thetheory of such self-oscillations is quite complex 
and thus will be considered separately. Here we will consider the opposite limiting case of 
self-oscillations of very high amplitude, which may be described approximately as discontin- 

uous oscillations. 

Relaxation Self-Oscillations. If the dependence of nucleation rate on relative super- 
heat{ng or supercooling is very intense, it can be approximated by a step function, equal to 
J at u > u, and zero at u < u,. If the value J is sufficiently large, then at u m > u, relaxa- 
tion type self-oscillations will appear in the system, which can be studied in, the approxima- 
tion of discontinuous oscillations. As a simple, although not fully representative, example, 
we will consider the case where the duration of the stay within the system of all bubbles (or 
other new phase particles) is identical and equal to tz: any bubble is removed from the sys- 
tem after passage of a time t I after appearance of the corresponding nucleus. 

In this case the phase portrait of the self-oscillation process is approximately a rec- 
tangle ABCD in the plane of the variables u and n, where n is the numerical bubble concentra- 
tion (Fig. 2). On the segment AB the phase trajectory of the process is controlled by the 

simple equation 
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Fig. i. Dimensionless frequency and critical value of parameter 
S vs parameter R. 

Fig. 2. Phase portrait of discontinuous self-oscillations. 

from which follows 

du u u m 9 c T, 
+ = , t ,  -- -- - - ,  

dt t ,  t ,  = ? 

. = . , . - ( . m - . . ) o x p  ( - ! - - / ,  t --In . . , - . A  , 
, t ,  ] Urn - -  u ,  (14) 

where tAB is the time required for displacement of the representative point along this seg- 
ment from A to B. 

At large J motion from B to C occurs in a jump, completed over a brief time tBC , over 
which n, nuclei per unit volume are formed in the system. To find this latter value we 
use the equality of the quantity of heat supplied to the system from without to that ab- 
sorbed in formation and growth of bubbles in state C, whence we obtain 

(u~ - -  u , )  n ,  n, , tBc = ~ tAB "~ t,. 
4n~u,r ,  J 

From this and Eq. (14) it is evident that the condition of "discontinuity" of the self-- 
oscillation is equivalent to the requirement 

~2 U m -  U, |n_ i Um--UA 
J ~  4npv~r, u,  u m - - u ,  (15) 

Assuming t h a t  a l l  n u c l e i  a r e  formed p r a c t i c a l l y  s i m u l t a n e o u s l y ,  which i s  a p p r o x i m a t e l y  
v a l i d  when i n e q u a l i t y  (15) i s  s a t i s f i e d ,  mo t ion  of  the  r e p r e s e n t a t i v e  p o i n t  on t he  segment CD 
o f  the  phase  t r a j e c t o r y  i s  d e s c r i b e d  by an e q u a t i o n  f o l l o w i n g  from Eqs. (1) and ( 3 ) :  

du u 4 ~  ( i )x/2 am 
d--7- + ~  + Oc n, r~+2~T0tcu(~)dr u =  t, ' 

which can e a s i l y  be r educed  to a s e c o n d - o r d e r  e q u a t i o n  i f  we i n t r o d u c e  as the  new i n d e p e n d e n t  
v a r i a b l e  the  i n t e g r a l  o f  u o v e r  t ime ,  and then  assume r e d u c t i o n  i n  o r d e r  upon i n t r o d u c t i o n  o f  
u as t he  new v a r i a b l e .  I n  the  g e n e r a l  case  the  e q u a t i o n  o b t a i n e d  must be i n t e g r a t e d  n u m e r i c -  
a l l y .  However,  in  r e a l  p r o c e s s e s  o v e r  p r a c t i c a l l y  t he  e n t i r e  t ime i n t e r v a l  ( t c ,  tD) the  i n -  
e q u a l i t y  r >> r ,  i s  s a t i s f i e d ,  which o b v i o u s l y  c o r r e s p o n d s  to  the  i n e q u a l i t y  At = r~/2BTo << 
t,. In this case the equation simplifies significantly and its solution can be written in 
implicit parametric form: 

I dY 1 -I I [In ( zF  y + 1) 2 + (16) 
u = - - ~ y  ] , F (y) -- 3u, z~ z2g - -  z V'-y-- + 1 

2 V 3 arctg2--zY Y ] [ 2 Um--U* ] I/3 
z - z = - 3 J " 

The relative error in Eq. (16) caused by neglect of the initial bubble radius can be 
significant only over the course of a time of the order of At after exit of the system from 
point C. 
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The unknown quantity u = u A is found by solving Eq. (16) for uat t= tD, tCD =tD--t C = tl; 
at this moment all bubbles practically simultaneously (over the course of a time tDA = tBC) 
leave the system, i.e., the system performs an almost instantaneous jump from state D to state 
A, after which the process described is repeated. 

On the basis of Eq. (14) and the definition of t I the duration of one full cycle (the 
self-oscillation period) is equal to 

t a B + ~ D = t l + t ,  ln U ~ - - U a  
' (17) 

U m - -  U, 

where u A i s  a f u n c t i o n  o f  t he  p h y s i c a l  p a r a m e t e r s  and t he  t ime t l ,  d e f i n e d  from Eq. (16 ) .  

I t  can  e a s i l y  be seen  t h a t  f o r  adequacy  of  t he  d i s c o n t i n u o u s  r e l a x a t i o n  o s c i l l a t i o n  model 
used  to  d e s c r i b e  t he  p h y s i c a l  problem o n l y  f u l f i l l m e n t  o f s t r o n g  i n e q u a l i t y  (15) r e g a r d i n g  nu -  
c l e a t i o n  r a t e  i s  n e c e s s a r y .  The s u p p l y  o f  h e a t  to  the  l i q u i d ,  removal  o f  b u b b l e s ,  and growth  
o f  an i n d i v i d u a l  bubb le  may be d e s c r i b e d  by r e l a t i o n s  o f  q u i t e  d i f f e r e n t  t y p e s ,  depend ing  on 
t he  c o n c r e t e  c o n d i t i o n s  o f  the  p r o c e s s .  This  makes p o s s i b l e . e f f e c t i v e  s o l u t i o n  o f  a v e r y  
wide  c l a s s  of  problems of  s e l f - o s c i l l a t i o n  i n  b o i l i n g ,  c r y s t a l l i z a t i o n ,  e t c . ,  on the  b a s i s  o f  
t he  g e n e r a l  scheme p r e s e n t e d  above .  For  example,  i f  t h e r e  i s  a d i s t r i b u t i o n  o f b u b b l e s  o v e r  
d u r a t i o n  o f  s t a y  in  the  sys t em,  then  i t  can be assumed t h a t  n s a t i s f i e s  some i n d e p e n d e n t  
k i n e t i c  e q u a t i o n .  I t s  s o l u t i o n  may be used i n  p l a c e  o f  n ,  on the  segment  o f  t he  s e l f - o s c i l -  
l a t i o n  c y c l e  a f t e r  t he  p o i n t  C, and i f  p r a c t i c a l l y  a l l  b u b b l e s  s u c c e e d  in  l e a v i n g  t he  sy s t em 
b e f o r e  i t  a t t a i n s  a s u p e r h e a t i n g  u , ,  t h e n  t he  r e m a i n i n g  r e l a t i o n s h i p s  o f  t he  p r o c e d u r e  a r e  
unchanged .  The phase  t r a j e c t o r y  o f  such a p r o c e s s  i s  d e p i c t e d  by t h e  dashed l i n e  o f  F i g .  2. 

NOTATION 

c, specific heat; f, distribution function; g, parameter in Eq. (8); I, integral in Eq. 
(4); J, nucleation rate; L, latent heat of phase transition; n, numerical concentration of 
nuclei; r, nucleus radius; s, variable introduced in Eq. (3); R, S, parameters defined in 
Eq. (i0); T, temperature; Tm, To, maximum temperature and boiling temperature; t, time; u, 
relative superheating; Um, Us, maximum and steady-state superheat values; U = Um/Us; v, vol- 
ume of nucleus (bubble); x, superheating perturbation; ~, heat-transfer coefficient; 8, coef- 
ficient in Eq. (3); y, mass-transfer coefficient; %, thermal conductivity; 9, complex fre- 
quency; $ = X/Us; p, density; T, dimensionless time; ~ = f/r; m, real frequency; asterisks 
denote special values of various quantities. 
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